A structure identification method of submodels for hierarchical fuzzy modeling using the multiple objective genetic algorithm

نویسندگان

  • Kanta Tachibana
  • Takeshi Furuhashi
چکیده

Fuzzy models describe nonlinear input-output relationships with linguistic fuzzy rules. A hierarchical fuzzy modeling is promising for identification of fuzzy models of target systems that have many input variables. In the identification, (1) determination of a hierarchical structure of submodels, (2) selection of input variables of each submodel, (3) division of input and output space, (4) tuning of membership functions, and (5) determination of fuzzy inference method are carried out. This article presents a hierarchical fuzzy modeling method with an uneven division method of input space of each submodel. For selecting input variables of submodels, the multiple objective genetic algorithm (MOGA) is utilized. MOGA finds multiple models with different input variables and different numbers of fuzzy rules as compromising solutions. A human designer can choose desirable ones from these candidates. The proposed method is applied to acquisition of fuzzy rules from cyclists’ pedaling data. In spite of a small number of data, the obtained model was able to give detailed suggestions to each cyclist. © 2002 Wiley Periodicals, Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Multi-Criteria Risk-Benefit Analysis of Health Care Management

Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: R...

متن کامل

Modeling of Epistemic Uncertainty in Reliability Analysis of Structures Using a Robust Genetic Algorithm

In this paper the fuzzy structural reliability index was determined through modeling epistemic uncertainty arising from ambiguity in statistical parameters of random variables. The First Order Reliability Method (FORM) has been used and a robust genetic algorithm in the alpha level optimization method has been proposed for the determination of the fuzzy reliability index. The sensitivity level ...

متن کامل

Optimization of e-Learning Model Using Fuzzy Genetic Algorithm

E-learning model is examined of three major dimensions. And each dimension has a range of indicators that is effective in optimization and modeling, in many optimization problems in the modeling, target function or constraints may change over time that as a result optimization of these problems can also be changed. If any of these undetermined events be considered in the optimization process, t...

متن کامل

Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions

The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2002